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The Landau-Lifshitz fluctuating fluxes in fluctuating hydrodynamics are 
derived from the deterministic Boltzmann equation with the aid of a 
reduction method developed by Fujisaka and Mori. Thus it is shown that 
the hydrodynamic fluctuations in nonequilibrium systems are generated by 
the reduction of variables from the ~-space distribution function to its five 
momentum moments, i.e., the hydrodynamic variables. This differs from 
the Bixon-Zwanzig and Fox-Uhlenbeck theories, in which the Landau- 
Lifshitz fluctuating fluxes are derived from the molecular fluctuating force 
in the stochastic Boltzmann-Langevin equation, which is, however, negligible 
in nonequilibrium systems. Thus the present method improves the Chapman- 
Enskog reduction method so as to include the hydrodynamic fluctuations 
generated by the reduction of variables. 
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fluctuating forces; the Boltzmann equation; collisiona[ invariants; hydro- 
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the fluctuation-dissipation theorem of the second kind. 

1. I N T R O D U C T I O N  

H y d r o d y n a m i c  f luctuat ions p l ay  an impor t an t  role not  only in equi l ibr ium 
systems but  also in nonequi l ib r ium systems. They  determine  the l inear  
responses of  equi l ibr ium systems to external  d is turbancesJ  1,2) In  non-  
equi l ibr ium systems, they become i m p o r t a n t  in the crit ical region o f  
h y d r o d y n a m i c  instabil i t ies  and  cont r ibu te  to  macroscopic  behav io rJ  ~,~ A 
general ized fluid dynamics  was p r o p o s e d  by L a n d a u  and  Lifshitz (2~ as a 
theory  inc luding such h y d r o d y n a m i c  fluctuations.  In  this theory,  however,  
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fluctuating fluxes are just added to the usual hydrodynamic equations, and the 
fluctuation-dissipation theorem, which relates their time correlation functions 
to the transport coefficients, is assumed to hold even in nonequilibrium 
systems. Recently it has been realized that anomalous fluctuations occur near 
instability points of the open systems far from thermal equilibrium. Therefore 
it is important to be able to derive the Landau-Lifshitz hydrodynamic 
fluctuations in nonequilibrium systems from a basic standpoint. To do this 
we consider a neutral dilute gas for which the Boltzmann equation holds, 
since the Boltzmann equation enables us to define and specify nonequilibrium 
systems most clearly. 

The hydrodynamic processes of dilute gases are characterized by space- 
time coarse-graining with the space-time cutoff (bh, tc~) satisfying bh >> Ii, 
ten >> rr, where l r is the mean free path of molecules and ~'r is the mean free 
time. The hydrodynamic equations for describing these processes can be 
derived from the kinetic equations for the kinetic processes characterized by 
(l r, rs). The kinetic equations have been derived rigorously from the me- 
chanical equations of motion by Tokuyama and Mori. (5~ According to their 
theory, the spatially coarse-grained particle density Npr(t) in/~-space with a 
length cutoff b satisfying Ii >> b >> r0, where ro is the molecular diameter, is 
governed by a stochastic equation of motion: 

OtNpr(t) = - ~  (?~/m) a~Npr(t) + Cpr(N) + Gp,(t) (1) 
tZ 

where 0t -= a/Ot, 06 =- O/Or,, Cpr(N) is the Boltzmann collision term, and 
Gpr(t) is a molecular fluctuating force. Nvr is decomposed into a deterministic 
part F,r and a fluctuating part Zpr (Np, = Fp, + Zp,) whose scaling proper- 
ties differ from each other. In nonequilibrium systems with three dimensions, 
the fluctuating part ZD~ is negligible compared to the deterministic part Fp,.<5> 
Hence (1) leads to the deterministic Boltzmann equation 

OtFp~(t) = - ~  (p~/m) O,Fp~(t) + Cp,(r) (2) 
C~ 

On the other hand, in equilibrium systems, the deterministic part Fp, is 
the Maxwell distribution F, e, which is a stationary solution of (2), and Zo, 
represents fluctuations around Fpe: 

ND,(t ) = Fp" + Z~,,(t) (3) 

Therefore the deterministic part F,~ does not contribute to the time evolution 
at all, and the time evolution is determined by the fluctuations Zpr(t) for 
which (1) leads to the stochastic Boltzmann-Langevin equation ~5~ 

~tZp,(t) =- - ~  (p~/m) O~Zp,(t) + D,eZpr(t) + Gp,(t) (4) 
t~ 
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where Dp e is the linear collision operator. Thus the molecular fluctuating 
force Gp,(t) is not negligible, in contrast to the case ofnonequilibrium systems. 

Attempts to derive the phenomenological Landau-Lifshitz fluctuating 
fluxes from the kinetic equations have been made by Bixon and Zwanzig (6~ 
and Fox and Uhlenbeck. (7) They derived them from the fluctuating force of 
the Boltzmann-Langevin equation (4). Therefore, the origin of the hydro- 
dynamic fluctuations is the molecular fluctuations, and their theories are valid 
only in equilibrium systems. On the other hand, in nonequilibrium systems, the 
situation is quite different, since the fluctuating part is negligible and the 
deterministic Boltzmann equation (2) must be used. In this case, the Landau- 
Lifshitz fluctuating fluxes must be derived from the fluctuations generated by 
the reduction of variables from the/z-space distribution function Fp, to the 
hydrodynamic variables. Namely, in nonequilibrium systems, the molecular 
fluctuations are negligible, and the Landau-Lifshitz fluctuating fluxes must 
be generated by the reduction of variables. This cannot be treated by the 
Chapman-Enskog reduction method. A new reduction method which can 
treat such a generation of fluctuations has been developed by Fujisaka and 
Mori.(8) 

In the present paper, we shall study the origin of the hydrodynamic 
fluctuations and the structure of the transport coefficients with the aid of the 
Fujisaka-Mori reduction method in both equilibrium and nonequilibrium 
systems. It will be shown that in nonequilibrium systems, the origin of the 
hydrodynamic fluctuations is the fluctuations generated by the reduction of 
variables for Fpr, and the fluctuating fluxes are related to the linear transport 
coefficients through a fluctuation-dissipation theorem of the second kind, 
whereas in equilibrium systems, we obtain the same results as Bixon and 
Zwanzig, and Fox and Uhlenbeck. 

2. A N E W  R E D U C T I O N  M E T H O D  

The hydrodynamic variables represent the collisional invariants for 
which the Boltzmann equation leads to the conservation laws. The collisional 
invariants are 

\p2 /2m/  

where m is the mass and p~ is the c~ component of momentum. The hydro- 
dynamic variables are defined by 

Au,(t)= A.r(N(t)) = - f dr' A h ( r - - r ' ) [ f  dp (6) 
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with Ah(r ) the coarse-grained 3-function 

An(r ) -- ( 1 / f2 )~ '  exp(--iq.r),  q <_ a[bh (7) 
I1 

where f~ is the volume of the system and Y.q' is the sum over the wave vectors 
q whose magnitudes are smaller than the cutoff qc =- 1/bh. Thus we take the 
coarse-grained hydrodynamic variables in accordance with the hydrodynamic 
space-time coarse-graining. They take the form 

A.,(,) = IA1 ,,(t)l mnu  

\ A2,(t) ] \ankBT + mnu2/2l 

(8) 

where n(r), u j r ) ,  and T(r) are the coarse-grained local particle density, local 
fluid velocity, and local temperature, respectively. 

The hydrodynamic variables are the first five momentum moments of  
Np,. Therefore, in order to derive the hydrodynamic equations from the 
kinetic equation for Npr, we have to eliminate the higher moments other than 
the hydrodynamic variables. We first discuss a new reduction method which 
takes into account the fluctuations generated by the reduction of variables 
correctly. 

2.1. General Formula 

Let us write the stochastic equation of motion (1) as 

0tN,(t) - ~,(N) + G,(t) (9) 

and introduce the distribution for N(t) - {N~(t)} to have a set of values 

f -  (J;}, 

II~(t) --- 3(N(t) - f )  = ~-~ 3(N~(t) - f )  (10) 

As was shown by Tokuyama and Mori, (5) its time evolution is given by 

OtlI~(t ) = M(f)II1(t  ) + Gi(t ) ( l l a )  

I: II1(t ) = etU~)II~(0) + ds ea-")u(1)Gt(s) ( l lb)  

where 

0 0 
M(f) -- Mo(f) + Ml( f) - - ~  ~. C((f) + ~ ~'~ Ff~ Of~-- E~j(f) (12) 

G,(t) = f f~G1(t ) df  (13) 
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In (12), Mo(f) represents the drift term and Ml(f) the diffusion term. The 
fluctuating forces satisfy the orthogonality condition 

<G~(t)H(N(O))) = <Gs(t)H(N(O))> = 0 (14) 

where H is an arbitrary functional of N(0), and a fluctuation-dissipation 
theorem of the second kind leads to 

(G,(tl)Gj(t2) ; f>  = 23(h - t2)E,s(f) (15) 

The time evolution of any functional of N(t), B(N(t)), can be written as 

B ( t ) =  f df B(f)IIs(t)= f df[~(t)Hs(O) + fl  ds ~ ( t -  s)Gs(s)] 

(16a) 

~tB(t) = f df[IIs(O)et~+ + f~ ds Gs(s)e~t-s'M+]M +B(f) 

+ f dfB(f)Gs(t) (16b) 

where 

/7(t) -= exp(tM +) B(f) (17) 

Using the Mori identity for linear operators L, P, and Q --- 1 - P ,  

e ~L = etLP + ds e(t-~LPLe~OLQ + et~ (19) 

we can rewrite (16b) as 

OrB(t) = f df IIs(t)[PM +B(f)] 

+ (t ds ( dfHs( t -  s)[PM + O.(s)] + FB(t) (20) 
do J 

where 

QB(t) = exp[t(1 - P)M +] (1 - P)M+B(f) (21) 

FB(t) =-- QB(t) + f df B(f)Gs(t) + fl  ds f df O_.B(t - s)Gs(s) (22) 

QB(t) =- [(~.(t)le-+mo) (23) 
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Let us take as P a projector onto the hydrodynamic variables A(f)  =- 
{A.,(U)}, 

PB(f )  ==- (B(f) ;  A( f ) )  (24) 

where 

(B(f ) ;  a) =- J df  B( f )p , ( f )  (25) 

Pa(f) -= po(f) 3(A(f) - a)/w(a) (26) 

w(a) ~ f d f  po(f) 8(A(f) - a) (27) 

Here poor) is the initial distribution for N(0), and pa(f) is the conditional 
probability distribution with the value of A(f) being fixed so as to be a. Then 
(20) takes the form 

P 

a,B(t) = <M +(f)B(f); A(t)) + J. ds (M+(f)~)B(s); A(t - s)> + FB(t) 

(28) 

We take as B(t) the moment generator of the hydrodynamic variables, 

II~(t) --- 3(a(t) - a) = f d f3(A(f)  - a)II,(t) (29) 

Then (28) leads to a hydrodynamic master equation 

OtH~(t) = ( M  +(f) 3(A(f) - a); A(t)) 

J2 + ds (M+( f )0 , ( s ) ;  A(t - s)) + F~(t) (30) 

where 0~(t) and F~(t) are given by (21) and (22) with 3(A(f) - a) for B(f). 
This is a special case of the reduced equation formulated by Fujisaka and 
MoriJ 8~ It is worth noting that the master fluctuating force F~(t) is composed 
of three parts: the fluctuating force Q~(t) generated by the reduction of 
variables, the molecular part Gi(t), and their cross term. The first-moment 
equation of this master equation leads to a reduced equation of motion for 
A,r(t) which gives the fluctuating hydrodynamic equations. 

The initial distribution poO r ) must be chosen so as to give the statistical 
ensemble of the system correctly before the lapse of the hydrodynamic time 
scale rh. In the usual nonequilibrium fluids even in turbulent states, the local 
states are approximately in thermal equilibrium with the local density n(r), 
local fluid velocity u=(r), and local temperature T(r), and the local equilibrium 
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ensemble produces the correct nonequilibrium ensemble in a few mean free 
times. Then we can take the local equilibrium distribution as po(f). 

It is worth noting here a physical meaning of the reduction of variables. 
The hydrodynamic variables A(t) are the only slowly varying degrees of 
freedom of the system in the hydrodynamic length and time scale. They are, 
however, coupled to the rapidly varying degrees of freedom whose length 
scales are smaller than bh or whose time scales are shorter than t~h. In order 
to take into account this coupling fully, we eliminate the rapidly varying 
degrees of freedom and derive a closed equation of motion for the hydro- 
dynamic variables A(t). Equation (30) is such a closed equation. Thus the 
hydrodynamic equations are derived and the dissipative terms represent the 
renormalization by the rapidly varying degrees of freedom. 

2.2. Nonequil ibr ium Systems 

]Let us start with the stochastic equation of motion (1), which leads to 

~P= a,fp, + cp,(f) (31) ~ ' ( f )  = ~ p ' ( f )  = - m 

M0(f) = _ f ~ d p d r a [ . . d  Ofi, r -~P~a,fpr+Cp,(f)]m (32) 

f ~ dp dr f f dp' dr' ~ a M,(f) = T a a  7 afp, afp.,, Emw"0e) (33) 

where w is the phase volume of the coarse-graining cell in tz-space3 ~ In non- 
equilibrium systems, let us take, as the initial distribution, the local equi- 
librium distribution 

po(f) = N(a) exp[-(1/2) f f  dp dr (Sfp,)2/F~r(a)] (34) 

where 

8fp, - fp, - F~,(a) (35) 

[F~r(a)].-.Am = F~,~(t) =- [n/(2rrmkBT) 3f2] exp[-  (p - mu)2/2mkBT] 

Mo + ~(A(f)- a)= - ~ f  dr 0 co-'~n ~ {[M~ Aur(f)] 8(A(f) - a)) 

Using 

(36) 
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and taking MpoO e) - 0 in the dissipative second term, we can transform (30) 
into 

a t i i~( t )_  _ ~ f  dr 0 o~ ~ [v.,(a)n~(t)] 
t 

-fo - 

w(b) + F~(t) (37) 

with 

~ f  dr' 0 ffdpdp'gu(p)gv(p') rut(a) - (Mo+Au,(f); a> - ~ Oau,,ja 

x (Emp,,,(f);  a) (38) 

Qa(t) = exp[t(1 - P ) M  +] (1 - P ) M  + ~(Af f )  - a) (39a) 

dr 0 8(A(f) - b)gu(p) o;(o)- oo(o)-2gf;fff d,d; dr'  

[lOefp,r, Ofp,,,] x ~ ] g , : p , v ( f )  (39b) 

F~(t) = Q~(t) + f afa(a(f) - a)G,(t) 

+ f]ds  f df Oa(t - s)G,(s) (40) 

where use has been made of (1/~o) Of,,,,/8fp r = 8(p - p') A(r - r') and oJ~ is 
the volume of the hydrodynamic coarse-graining cell, o~h -= (bh) a, with d the 
spatial dimensionality. Equation (37) has the standard structure of the 
master equation in the memory function formalism. (m 

In nonequilibrium systems, however, the fluctuating part Z,r(t) is 
negligible compared to the deterministic part Fp,(t). Therefore the molecular 
fluctuating forces Gw(t ) and G1(t ) and the diffusion coefficients Err;,, r, can 
also be neglected. Then the starting equation becomes the deterministic 
Boltzmann equation (2), and the corresponding master equation reduces to 

atrI,(t) = M0(f)II1(t ), n , ( t )  = 8(F(t) - f )  (41) 

Therefore (37) reduces to 

OtII~(t) = - ~ f  dr r aau---~v [v~ )] 

- f [  da f db IIb(t - s)(O~~176 w(b) + F~~ (42) 
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with 

where 

v~ =- (Mo+A~r(f); a) (43) 

~ f d r O  O~~ --- - - -  [U(t)k..(0) 3(A(f) - a)] (44) 

F~~ -= O~~ (45) 

U(t) =- exp[t(1 - P)Mo +1 (46) 

/~,~(t) ~ U(t)(1 - P)Mo+A,.( f )  (47) 

The reduced equation of motion for A(t) is given by 

OtA,r(t ) = v~ + ds con w(a) Oaw. 

{w(a)(k,~(s)kv~.(O); a)}] + Rub(t) (48) • 
J a = A ( t  - s )  

where use has been made of Oau~/Oa,... = o2n 3,.,. Ah(r -- r') and 

Rur(t) =-- [k,r(t)]/~F~0~ (49) 

This has the standard structure of  the reduced equation of motion in the 
memory function formalism. (~ Thus. in nonequilibrium systems, the propa- 
gator is given by the drift term Mo +(f). which is determined by the Boltzmann 
equation (2). and the hydrodynamic fluctuating forces R~r(t ) are generated 
by the reduction of variables from Fpr(t) to A,~(t). 

2.3. Equilibrium Systems 

In equilibrium systems, the deterministic part Fpr is the Maxwell 
distribution, and the hydrodynamic variables (6) are written as 

A,r(t)=A,r(Z(t))=fdr'gh(r-r')(fdpg,@)[F/+ Zpr.(t)]) (50) 

Namely, the A.~(t) are the functionals of Zor(t ), and the generator (29) can 
be written as 

II~(t) = 3(A(t) - a) = ( dz 3(A(z) - a)II~(t) (51) 
J 

where 

II~(t) _= ~(Z(t) - z) (52) 
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Therefore, we start with the Boltzmann-Langevin equation (4) and take, as 
the initial distribution p0(f), the equilibrium distribution 

pe(z) = N(oo)exp[ - (1 /2 ) f f  dp dr (zpr)2/Fp e] (53) 

Then, as will be shown in Appendix A, (30) leads to 

0tii~(t) = _ ~ f  dr 0 -~ ~ [v~ 

_ [ f 
(Oo~176 

w(b) + F~(t) (54) 

f f  f ~ f  dr' l o~A.,(t) = v~ + as 
oJ~ w(a) east, 

with 

x [w(a)(R.,(s)k,r,(O); a) + Ru,(t) 
a=A( t - s )  

(55) 

Fa(t) = Q~~ + ds dz Oa~ - s)Gz(s) 

+ f dz 8(A(z) - a)G~(t) 
J 

(56) 

1o f R'u.(t) = R.r(t) + ds dz R.r(t - s)G~(s) (57) 

The systematic parts of these equations are identical to those of (42) and (48). 
However, the fluctuating forces (56) and (57) differ from the fluctuating 
forces Q~~ and R.r(t). 

3. H Y D R O D Y N A M I C  F L U C T U A T I O N S  IN 
THE  N O N E Q U I L I B R I U M  S Y S T E M S  

In the linear dissipative case, a linear relation between fluxes and forces 
holds. Then the reduced equations of motion (48) lead to fluctuating hydro- 
dynamic equations with the linear transport coefficients. Before treating this 
case, however, we investigate the structure of (48). With the aid of the 
relation C5~ 

(l/w) ~fp,,,/~fp, = 3(p' - p) A(r' - r) (58) 

we find that (6) and (32) lead to 

Mo+(f)Aa,(f) = - ~  0~j'~,(f) (59) 
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where 

j ~ ( f )  = f dr' Ah(r - r')[ f dp (p6/m)g,(.p)fp,.] (60) 

and the collision term of Mo + does not contribute since the A,~(f) are the 
collisional invariants. Therefore (43) and (47) lead to 

v~ = - ~  O~[n(r)h~(a)l (61) 
6 

f~.,(t) - Z  "6 = 8~S~,(t) (62) 

where 

hgr(a) =- ( j ~ ( f ) ;  a)/n(r) (63) 

~q~,(t) - U(t)(1 - P)j~r(f) (64) 

Since (24) and (34) lead to Pfpr = F~,(a), (63) and (64) reduce to 

h g , ( a )  = rnu6ua + k .T  a6,B (65) 
\(mu2/2 + 5kBT/2)u~] 

with ( 0 ) 
J~,(p) ~ J~(P) (67) 

J~r~) + ~ uB(r)J~r~(P) 

Here we have defined the kinetic transport fluxes 

Jlr(P)~B =_ m(V6V B - V 2 ~6.B/3) (68) 

J~r(P) =- (m V2/2 - 5kBT/2)V6 (69) 

with I~ the thermal velocity, V6 =- (p~/m) - u6. 
The hydrodynamic variables satisfy the laws of conservation of mass. 

momentum, and energy 

atA.,(t) = - ~ ,  a6j~r(t ) (70) 
6 

In fact, the reduced equation of motion (48) takes this conservation form with 
the flux densities 

�9 a t j , , (  ) = n(r. t)h~(A(t)) + J~ , ( t )  (71) 
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where we have defined the transport fluxes 

3-7,r(t ) - ~ ~, fo ds f dr' ( [1~  X~r,(a) ~1 Oavr~,O O~'] 

x (~,(s)g~r,(0); a)~ + ST,,(t) (72) 
) a = A ( t - s )  

ST,,(t) = [ ~ , ( t ) ] ~ o )  (73) 

Here the X(,(a) are the thermodynamic forces 

Xr = ee[(l/o~)(~/~av,)~(a)] (74) 

with a(a) -- kB log w(a) the entropy of the thermodynamic state a. 
The S~,(t) in (72) represent the fluctuating part of the flux densities, and 

lead to the Landau-Lifshitz fluctuating fluxes. Since the length cutoff bh of 
the r dependence of (66) is much longer than the mean free path of molecules, 
we have, on the hydrodynamic space-time scale, 

(gT,,(t)~,,(0); a) = 2k, L~;~B(a,) Ah(r -- r') An(t) (75) 

f/ L,~.~(a,) --- (1/kB) dt (g~,(t)S~,(0); a , )  (76) 

where a, denotes the hydrodynamic variables at r. As will be shown in 
Appendix B, (66) can be written in (76) as 

% f dr' A~(r - r') f dp [exp(t/~p,) J~.,(p)] 8f~,,. (77) ~ r ( t )  

where/~p, is defined by 

/~pr~b -- (1/F~,)Dp, tF~] (78) 

with Do~ the linear collision operator in the local equilibrium state. Hence, 
inserting (77) into (76) and using (3fpr bf~,,r, ; a) = 8(p - p') A(r - r')F~(a), 
we obtain 

/ / /  L,~;~(a,) = (1/kB) dt dp [exp(t/~pr) J~.~(p)]J~(p)F~(a) (79) 

Using (75) in (72) leads to 

Y~,(t) 

The L~:ve(a, ) represent the transport coefficients, Equation (75) gives a 
generalized fluctuation-dissipation theorem of the second kind. 
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In linear dissipative systems, the a dependence of (79) is negligible. Then 
(80) and (79) reduce to 

J-~r(t) ~ Lu~;~eXvB~(A(t)) + S~(t )  (81a) 
v B 

L~;v~ =- (1/ko) f[ dt f @ [exP(tDpO J~(p)]J~r(p)F~/ (81b) 

This is the linear relation between the transport fluxes and the thermodynamic 
forces. As will be shown in Appendix C, the Lu~;vB lead to the shear viscosity 
~7 and the thermal conductivity ~c: 

/ / /  '1 (1/kBT) dt dp - ~  ~y ~ ~ = [exp(thp ) J~]J~rFp (82) 

/ / /  K = (I/kBT ~) dt dp [exp(t/3p0 J~]J~,Fp ~ (83) 

Furthermore, as also will be shown in Appendix C, the conservation equa- 
tions (70) with the flux densities (71) lead to fluctuating hydrodynamic 
equations which agree with those proposed by Landau and Lifshitz. ~2~ 

4. H Y D R O D Y N A M I C  F L U C T U A T I O N S  IN 
E Q U I L I B R I U M  S Y S T E M S  

In equilibrium systems, the hydrodynamic fluctuating fluxes and the 
transport coefficients are derived from the Boltzmann-Langevin equation (4) 
in the same manner as in the preceding sections. Since (4) is linear and can be 
integrated to give 

Zp,(t) = [exp(tLp,)]Zp~(O) + ds {exp[(t - s)L~]}Gp,(s) (84) 

with 

Lpr - - ~  (p,/m) 0~ + Dp e (85) 
c~ 

however, it is simpler to use an L-type projector for the reduction of 
variables, (1~ as will be shown in Appendix D. For a sufficiently large t 
(>>r~), the first term of (84) vanishes and the time evolution of the hydro- 
dynamic variables (50) is completely governed by the molecular fluctuating 
force Gpr(t). In the following, we use the notations defined in Appendix D, 
since this treatment is more convenient for a comparison with Bixon and 
Zwanzig's theory. Thus we obtain the conservation equations (70) with the 
transport fluxes 

e T~r(t) (86) J-~r(t) = ~ ~ Lu~:v,X~(t) + 
v B 
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where 

L.~;ve --- (1/kB)fo ~ dtf alp [exp(t/3p e) Ju~(p)]Jve(p)Fpe (87) 

The fluctuating fluxes consist of two parts of different origin: T~, = 

Tfu,(t) = f dp [exp(t/3. e) JJ(p)]Zp,(0) (88) 

T~.,(t) = f~ ds f dp [exp(s/~p e) JJ(P)lG,~(t - s) (89) 

The first part (88) represents the fluctuating force generated by the reduction 
of variables, and the second part (89) is the coupling between the first and the 
molecular fluctuating force Gp,(t). Furthermore, the following relation holds 
between the transport coefficients and the hydrodynamic fluctuating fluxes: 

I; k,L,~;~ = dr (T~,,(to)T~,(to + r))e (90) 

where (.--)~ denotes the average over the equilibrium ensemble. This equation 
represents the usual fluctuation-dissipation theorem of the second kind. 

Let us consider a sufficiently large time t (>>zh). In this limit, 7'1 vanishes 
and only T2 due to the molecular fluctuations survives, giving the hydro- 
dynamic fluctuating forces. This situation is the same as that of Bixon and 
Zwanzig's theory. (6) In this situation, (86) and (90) reduce to 

B Y~,( t)  = ~ ~ Lu=:~X~,(t) + Tgu~(t ) (91) 
v B 

f kBLu~:~ B = dr (T~u,(to)Tg, r(to + ~r))~ (92) 

Thus, the fluctuating fluxes and the transport coefficients are determined by 
the molecular fluctuating force Gp~(t). 

5. S U M M A R Y  AND REMARKS 

It has been shown that the Landau-Lifshitz fluctuating fluxes can be 
derived from the deterministic Boltzmann equation (2) by a statistical reduction 
of variables. Hence it turns out that Landau-Lifshitz fluctuating hydro- 
dynamics holds even for open systems far from thermal equilibrium, as far as 
the local states within the spatial cell with volume bh a (l~ >> bh >> lr) are 
approximately in local thermal equilibrium. On the other hand, in equi- 
librium systems, the hydrodynamic fluctuations come out from the molecular 
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fluctuating force Got(t) of (4), as was first shown by Bixon and Zwanzig (6~ 
and Fox and UhlenbeckJ v 

We have developed a new reduction method which takes into account 
the fluctuations generated by the reduction of variables. Equations (82) and 
(83) for the transport coefficients, however, lead to the same results as the 
Chapman-Enskog reduction method. <~) The time integrals lead to the form 

~ + )  =- (J~ur, + J ~ r ) / ( J ~ r ,  Jur)~ (93) 

where the parentheses denote the scalar product (A16). A simple approxima- 
tion is obtained by replacing (93) by 1/(/3o*}, which leads to (z2~ 

�9 1 z ( d ~ ,  J~g)/hlkBT, ~ ,,~ (d~r, J~r)/azkB T2 (94) 

where 

x~ j x  (J lr ,  - e x~ OoJ l r )  ( 2~, - e x Do J2,) (95) A1 = xy x~ ' A2 - / j x  Tx 
(Jlr,  J!r) ~. 2r, ~2r/ 

It is worth noting that the A~ approximately represent the lowest two nonzero 
eigenvalues of/~p*, and the J~r the corresponding eigenfunctions. The calcula- 
tion of (95) is straightforward, and (94) leads to results identical to the first 
approximation of Chapman and Enskog/~z) The second approximation can 
also be obtained from (93) with the aid of a variational principle for Do e. 

We have started with the stochastic equation (9) for Nor(t), although the 
fluctuating part Zvr and the molecular fluctuating force Gpr are finally 
neglected in nonequilibrium systems. The reason for this is the following. 
Since Gpr(t ) gives the diffusion coefficient Eor;p,r,0 c) and the diffusion term 
M~(f) ,  it is needed in order for M~(f )  to ensure that the local equilibrium 
distribution (34) holds approximately. In this sense, the molecular fluctuating 
force is also important in nonequilibrium systems. 

Equations (81a) and (86) have the same systematic part with identical 
transport coefficients, although their hydrodynamic fluctuating fluxes S~r(t) 
and Ts differ notably from each other. This situation may be understood 
in the following way. Equation (77) indicates that the fluctuating flux S~.(t) 
in nonequilibrium systems arises from the molecular collisions represented by 
/3or. The molecular fluctuating force Got(t) and its spectral intensity 
Eor;o,r,(F ), which produce the equilibrium hydrodynamic fluctuating force 
Tgur(t), also come out from the molecular collisions. The coupling of the 
molecular collisions with the hydrodynamic processes is represented by the 
systematic part of (81a) and (86), namely, by the kinetic transport fluxes 
J~r(P), which are approximately the eigenfunctions of /3or. This leads to 
identical transport coefficients in both equilibrium and nonequilibrium 
systems. 
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A generalization of the present theory to dense gases and liquids would 
be possible with the aid of a theory of generalized Brownian motions (9) and a 
scaling method for space-time coarse-graining, C4) as far as the fluids are 
approximately in local thermal equilibrium. This problem and the asymptotic 
form of (42) will be studied elsewhere. 

APPENDIX A. DERIVATION OF (54) AND (55) 

For equilibrium systems, let us start from the linear Boltzmann-Langevin 
equation (4) and the corresponding master equation for the generating func- 
tion (52). Using the same procedure as in Section 2.2, we obtain from (30) the 
following master equation: 

a~II~(t) = - ~ f  dr oJ--~h ~a,----~ [v~(a)Fl~(t)] 

<Oo(s)O/(o)> 
w(b) + Fa(t) (A1) 

Jo d 

with 

v~,(a) ~ <Mo+(z)A~,(z); a> ~ f dr' Oar , / f  dp dp' g~(p)g~(p') 

x <Ep,;r,r,(F ~ + z);a> 

Q~(t) = exp[t(1 - P ) M  +] (1 - P ) M  + 3(A(z) - a) 

dr 
0 0 , ( 0 )  - -  0 0 ( 0 )  - 2 f  fff dr, 

(A2) 

(A3) 

0 
x ~ 3(A(z) - b)gu(p) 

vv~r 

1 0 zP"----2"t~., ,(F * + z) (A4) 

Fa(t) =- Qa(t) + dz 3(A(z) - a)G~(t) + ds dz ~ ( t  - s)G~(s) 

(A5) 
where 

- ~ bz~,~ - O,zp, + Dpezp~ 

Ml(z) = f f  a, ar ff ap' r o 0 Eo.;, . . . (Fe+z) 
a~ J J ~ OZpr C~Zp, r, 

and M(z)pe(z) = 0 holds exactly. 

(A6) 

(A7) 
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Let us consider the diffusion coefficient Ep,:p,r,(F e + z). Since the fluc- 
tuating part Zp, ( t )  is small compared to Fp ~, we may assume Epr;p,r,(F ~ + z)  
= Epr;p,r,(F0. The diffusion coefficient in the equilibrium state Epr:p,~,(F *) is 
related to the collision term by the fluctuation-dissipation theorem of the 
second kind, and is written as ~5> 

Ep~;v,~,(F e) = - A ( r  - r')[DpeFp e 3(p - p')] (A8) 

Then (AT) leads to 

f f j  ~ e M I ( z )  = M1 + (z) = - dp dp'r 2 dr [Dp,Fp ~ 3(p - p')] ~zp~ Ozp,~ (A9) 

Since it contains the second differential operator with respect to z, we obtain 
for any linear function of z, B(z) ,  

M1  + (z )B(z )  = 0 (A 10) 

Next, let us consider the linear collision operator Dp e in the equilibrium 
state, which takes the form 

D~lX(Pl) = f dp~g~i fo  dP P f:=dg [FL.X(P~ *) 
+ r~,X(p~*) - F~,~X(p2) - F~2X(pl)] (A11) 

where X(p) is an arbitrary function of p, g2~ - ]P2 - p~[/m, p is the impact 
parameter, 9 is the azimuth, and p~* is the momentum of particle i in the 
restituting collision. Let us i n t r o d u c e / ~  by 

/~p~r ---- (1/Fpe)Dpe[Fper (A12) 

Since 
e e e e 

Eq. (AI I) leads to 

f fo ~ fo'" /3~,xr = dp2 g , ,  dp 9 dq~ F~,[~b(p2*) + ~b(p,*) 

- r  - r  ( A 1 3 )  

It turns out easily from (A13) that/3p e satisfies the following two properties: 

(r Dver = (Dpe~b~(p), ~b2(p) ) (A14) 

/3p~g~(p) = 0 (A15) 

where the scalar product is defined by 

(r r - ~ dp ~bl(p)~b2(p)Fp e (A16) 
d 
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Using/3p ~ and (A14) and (A15), we obtain 

Ml+(z) 3(A(z) - a) = 0 (A17) 

It turns out easily from (A10) and (A17) that the second term of rut(a) and 
the M~ +(z) in ~ ( t )  disappear. Furthermore, the second term of Qb'(0) also 
vanishes due to (A14) and (A15). Thus, the master equation (A1) leads to 
(54) and the reduced equations of motion (55). In equilibrium systems, the 
propagator is also given by the drift term Mo + (f), whereas the hydrodynamic 
fluctuating forces R~r have two parts. 

A P P E N D I X  B. D E R I V A T I O N  OF (77)  

First let us consider the collision term Cp~(f) in Mo + (f). When the devia- 
tion of Fp~(t) from the local equilibrium distribution F~(t) is small, the col- 
lision term can be linearized around F~(t): 

Cp,(F) ~ Dp, 3Fp,, 

The linear collision operator Dp, takes the form 

(B1) 

f fo ~ f2~ D.:X(p~) - dp~ g~ Up p d~o [F;:,X(p~' *) + F'.~.,X(p:) 
~ 0  

- F~:X(.p2) - F~2,X(pl)] (B2) 

Since F~:~F~:, = Uv:F~,,  we can introduce the operator/~p~ defined by (78) 
analogously to (A12). Therefore, the following property for/~p, can be derived 
in the same manner as in Appendix A: 

f~p ~l(p)[5.~(p)]g~, = f arp [ZSo,~I(p)]~2(1,)F~ (B3) 

The length cutoff b~ is taken to be much longer than the mean free path 
1 I. The b~, however, must be shorter than the length scale l~ of the hydro- 
dynamic modes, in which a large deviation from thermal equilibrium is 
produced. Then the term including the gradient in M0 + is negligible in (76), 
and the propagator reduces to 

U(t) ~ exp[t(1 - P) (1 /w)ff  dp dr {Dpr 3fpr}(O/~fpr)] (B4) 

Introducing gfpr = (1/F~) 3fv,, and using /Sp~ and its property (B3), we can 
write (66) as (77). 
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APPENDIX C. DERIVATION OF (82),  (83),  A N D  THE 
FLUCTUATING H Y D R O D Y N A M I C  EQUATIONS 

Let us consider the linear coefficients Lu~:~a. Inserting (67) into (81), we 
obtain 

with 

(! o o ) 

+ ~ UyudLly,ct;ld,# 
? 

(co 

gf  Llr.,:lo.B -- (1/kB) dt dp [exp(t/3p0 ~y ~6 e Arfp)]Jl~(p)Fp (C2) 

[exp(t/~pO J~(P)] J ~rFi, e (C3) 

fo ~ at f dp [exp(tDpOJ~(p)]J~,(p)Fp ~ (C4) L2~,2~ (1/k.) 

Taking an isotropy and symmetry into account, we have 

La~,~:2~ = 0 (C5) 

Llr,~:I~,B = T[?7(3y~ 3~a + 3ra 8~) + ?7' 8to 3~a] (C6) 

L2.:2. = T2KS.. (C7) 

Next let us consider the thermodynamic forces. As was shown by 
Green, (13) the following relations hold for the entropy or(a): 

( 1 / , ~ ) ( O / e a ~ , ~ ) , ~ ( a )  = - uo/T (C8) 
(1/(on)(a/Oa2,)a(a) = 1/T (C9) 

Then the thermodynamic forces X~. for/~ = (1. fl) and tz = 2 are written as 

X ~  = -[(l/T)8Bu~ + u,~X~,.] (ClO) 

X ~  = - (1/T ~) OuT (C1 I) 

Therefore, the dissipative terms ~ 5~ X~,L~:~ for/z = (1, 3) and t~ = 2 lead 
to the viscous-stress tensor P'e, ,  and the heat flow q~,,, respectively: 

X~LIB.~:~o =-- P~e.~ = 2?7 Y ~  - ~ Ylr 3~ + ~ Y~  3~B 
v t~ 6 6 

(C12) 

~ X~,,L2,~;~6 = q'.r + ~ uaP'B.,, (C13) 
v ~ B 
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Y~ - -(1/2)(Oau~ + O~ua) (C14) 

r q=,r = - K OaT (C15) 

Equation (C15) represents the Fourier law. For the coefficients ~ and K, we 
obtain (82) and (83) from (C6) and (C7). 

On the other hand, the fluctuating forces S~r(t) take the form ( o ) 
ST, r(t) = S~(t) 

S~,(t) + ~ u~S~r(t) 
(C16) 

with 

Sf~(t) -- { f @ [exp(tDpe) J~(P)l @pr}s_.F,o, 

Sgr(t) =- ( f dp [exp(tDl, e) J~r(9)] @pr}r_.,~o, 

(C17) 

(C18) 

Therefore, we can transform the conservation equations (70) with (71) and 
(81) into 

Otn = - V .  [nu] (C19) 

mn[O~ + u-Vlu = = - ~  OeP=B. r - ~ aBS'~e,(t) 
B /1 

(3[2)nkBt~t + u.VIT = - ~  O=q[,., - ~ ~ [P=B.r + S~rB(t)l O=uB 
~t a B 

(c2o) 

- ~ O~S~r(t) (C21) 
r162 

where Pae.r is the pressure tensor P.B,r--3~ePr~ + P'B,r, with Pr o the 
thermodynamic pressure Pr o = nkBT. Equations (C19)-(C21) agree with the 
fluctuating hydrodynamic equations proposed by Landau and Lifshitz. 

APPENDIX D. AN L-TYPE REDUCTION FOR 
DERIVING (86 ) - (89 )  

Let us introduce Zpr(t) by 

Z.p~(t) - (1]Fa~)Z~(t) (D1) 
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Then the linear Boltzmann-Langevin equation (4) and 
transformed into 

9fi~p,(t) =/ ,pr2.~(t)  + Go,(t) 

with 

405 

eq. (84) can be 

Zp,(t) = exp(tLp~)Zp,(0) + ds exp[(t - s)Lprl Gp,(s) 

(D2) 

(D3) 

~p, =- - ~  (p~/m) 8~ + Dp~ (D4) 
Cr 

Gpr(t) -~ (1 /rp~)G, , ( t )  (D5) 

Analogously to the discussion in Section 3, we have the conservation 
equations (70) with the flux densities 

j~r( t )  = chu~(t ) + 3-ur(t ) (D6) 

with 

h~,,(t) - (l/c) f dp (p~/m)gu(p){Fr, ~ + [/,2~,(t)lr;) (D7) 

YZ%(t)  - [ dp (p=/m)gu(p)[(1 - P )2i , , ( t  ) ]Fp ~ (D8) 
J 

where c is the mean particle density. Inserting (D3) into (D8) and using the 
operator identity 

f2 e tL = Pe  tL + ds (1 - P)e~(1-P)L(1 - P ) L P e  (t-s~L + e~(1-~)L(1 - P) (D9) 

we obtain 

; J2 ~-~, ( t )  = dp (p~ /m)g . (p )  ds [(1 - P){exp[s(1 - P)L~,,]} 

x (1 - P ) L p r P Z p r ( t  - s ) lFp e + T~r(t) (D10) 

Here the fluctuating forces T consist of two parts, T1, derived from the first 
term of (D3), and T~, derived from the second term: 

Tg.r ( t )  =- f dp (p~/m)g. (p)[(exp[ t (1  - P)/,p~]}(1 - P)2~,~(0)IF~, ~ (D11) 

T~.~(t) - f dp(pdm)g.(p) ~ ds 

x [{exp[(t -- s)(1 - P)Lpr]}(1 - P)Gp,(s )]Fp ~ (D12) 
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Next let us take as P the following L-type projector onto the collisional 
invariants g(p) - {g.(p)}: 

P~b(p) = ~ ~ @(p), g~(p))(g(p), g(P));~gv(P) (D13) 
A v 

where the scalar product is defined by (A16). It turns out easily that the 
projector (D13) has the following properties: 

($I(P), P$2~)) = (P~bz(p), ,52(p) ) (D 14) 

P2p,(t) = ~ ~ 3Aa,(t)(g(p), g(P))i#g~(P) (D15) 
h 

i p~ \ 
P[(p~,/m)gu(p)]=~ ~o~p2/3m ~ (D16) 

\ ( 5 /2 )kBTep./m / 

where T. denotes the equilibrium temperature and 

3A~r(t) - ~ ga(p)Zp.(t) alp (D17) 

Therefore, (DIO) leads to 

f2 J7,.(t) = ds (l/kB) 

x ~ ~ (J,,~(p), {exp[s(1 - P)LD~]}Jf(p))x{~(t ) + T~r(t) 
v 

where 

Ju~(p) --- (1 - P)[(p./rn)g~(p)] = 
0 

( (P./m)PB- 3~BP2/3m ) 
\ (p./m)[p2 /2rn - -~k~Te] ] 

(D18) 

(D19) 

X~r(t) - ~ kB(g(p), g(p))~-l[_ 0~3Ahr(t)] (D20) 

For the fluctuating forces, we have 

T~ur(t) = (Ju"(p), {exp[t(1 - P)Lp,]}(1 - P)LPD,(0)) (D21) 

f; T~,~(t) = ds (J,"(p), {exp[(t - s)(1 - P)Lp,]}(1 - P)Gp,(s)) 
(D22) 

Applying the hydrodynamic space-time coarse-graining and using (A14), we 
obtain (86)-(89). They agree with the results derived with the aid of the re- 
duction method formulated in Section 2. 
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NOTE A D D E D  IN PROOF 

I t  should be noted that  (77) is valid only for  S~r(t) of  (76) and cannot  be 
used for  the fluctuating forces S~r(t) of  (72) and (80). Due to the streaming 
term of  Mo + involved in U(t),  (66) does not  vanish as far as the spatial 
inhomogeneity is retained, whereas (77) vanishes in a time of  the order o f  the 
mean free time r r. As the complete equilibrium is attained, the fluctuating 
force S~,(t) vanishes and the molecular fluctuating force Gpr(t) becomes 
important .  
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